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Abstract
We describe a further development of the stochastic state selection method, which is a kind of
Monte Carlo method we have proposed in order to numerically study large quantum spin
systems. In the stochastic state selection method we make a sampling which is simultaneous for
many states. This feature enables us to modify the method so that a number of given constraints
are satisfied in each sampling. In this paper we discuss this modified stochastic state selection
method that will be called the constrained stochastic state selection method in distinction from
the previously proposed one (the conventional stochastic state selection method) in this paper.
We argue that, by virtue of the constrained sampling, some quantities obtained in each sampling
become more reliable, i.e. their statistical fluctuations are less than those from the conventional
stochastic state selection method.

In numerical calculations of the spin-1/2 quantum Heisenberg antiferromagnet on a 36-site
triangular lattice we explicitly show that data errors in our estimation of the ground state energy
are reduced. Then we successfully evaluate several low-lying energy eigenvalues of the model
on a 48-site lattice. Our results support that this system can be described by the theory based on
the spontaneous symmetry breaking in the semiclassical Néel ordered antiferromagnet.

1. Introduction

It is widely recognized that numerical methods based on first
principles are quite important in the study of quantum spin
systems. Actually the quantum Monte Carlo method has
contributed towards enlarging our knowledge of non-frustrated
quantum spin systems, especially of the spin-1/2 quantum
Heisenberg antiferromagnet on bipartite lattices [1–3]. Yet
it is well known that this Monte Carlo method has a limited
power in calculations of two-dimensional frustrated spin
systems. In this situation many studies on numerical methods
have been proposed and developed, sometimes depending on
approximations. One of these studies is the coupled-cluster
method [4, 5], which is a kind of variational method. Another
approach is the stochastic reconfiguration method [6] whose
origin is assigned to the fixed-node Monte Carlo method [7, 8].
One should also attend to various studies on the density matrix
renormalization group (DMRG) method [9–11] which extend
the original DMRG method on a chain [12, 13] to higher-
dimensional systems. The path-integral renormalization group
method [14] is interesting as well.

Recently we have developed another Monte Carlo
method, which we call the stochastic state selection (SSS)

method [15–20]. This method has a good property common
to the ordinary Monte Carlo method that in principle one does
not need any approximations specific to the system one investi-
gates. The sampling algorithm is, however, quite different from
the ordinary one since the SSS method is based on not impor-
tance sampling but a new type of stochastic selection. In the
SSS method we use an operator which generates sampled states
from any given state. This operator includes a set of stochastic
variables which are as many as the number of basis states of
the vector space under consideration. The essential point of the
selection is that many of these stochastic variables are valued
to be zero while their statistical averages are all equal to one.
Therefore in this algorithm we select a relatively small number
of basis states from a vast vector space in a mathematically
justified manner so that the statistical averaging processes give
us the correct value of any inner product. So far all these
stochastic variables have been generated independently.

In this paper we propose the constrained SSS method—
a modified SSS method whose samples satisfy a number of
given constraints. In order to make it possible we introduce
some dependences among the stochastic variables stated above.
From the theoretical point of view all we need to restore the
original state from sampled states is that the statistical average
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of each stochastic variable is equal to one. Therefore we can
define some variables in the set as functions of other variables,
instead of requesting they should be independently generated,
if each of these functions ensures that the statistical average
of the dependent variable equals one. Keeping this in mind
we develop the constrained SSS method, where values of
special inner products to represent constraints are unchanged
in each sampling. We then argue that sampling errors in
numerical studies can be reduced with suitable constraints and
with suitable dependent variables.

As a concrete example, we calculate energy eigenvalues
around the ground state of the spin-1/2 quantum Heisenberg
antiferromagnet on an Ns-site triangular lattice. The
Hamiltonian of the system is

Ĥ = J�
∑

(i, j)

�Si · �Sj , (1)

where �Si denotes the spin-1/2 operator on the i th site and the
sum runs over all Nb(=3Ns) bonds of the lattice. The coupling
J� is set to 1 throughout this paper. In our calculations
we employ the power method. The constrained SSS method
is used to calculate the expectation values of powers of the
operator Q̂:

Q̂ ≡ l Î − Ĥ , (2)

where Î denotes the identity operator and l is a positive number
which depends on the lattice size. For each lattice size we
choose one value of l which ensures that the ground state
eigenvalue of the system corresponds to the eigenvalue of Q̂
whose absolute value is the largest. Detailed explanations for
it are given in appendix A.

One reason why we study this system here is that, as
is well known, it is a typical example of strongly frustrated
systems in two dimensions. Another reason is that there
has been a long history of investigations into what state is
realized on the triangular lattice. Lots of studies on this system
[3–5, 11, 21–30] indicate the ground state with the three-
sublattice order [21]. One should, however, also note recent
works [31–33] which suggest that this quantum system has a
richer phase structure than the one expected from the classical
spin wave theory, as well as other studies [4, 30] which show
that this system is near the quantum critical point.

The plan of this paper is as follows. In section 2 we
describe the method. Section 2.1 is devoted to a brief review
of the conventional SSS method [17]. In sections 2.2 and 2.3
we make a detailed account of the constrained SSS method.
First we give a simple example to explain how we impose a
constraint in a sampling in section 2.2. Then extensions to
more general cases are discussed in section 2.3. Sections 3–
5 are for applications of the method to the spin-1/2 quantum
Heisenberg antiferromagnet on triangular lattices. In section 3
we study the model on a 16-site lattice, where the exact
eigenstate can be easily obtained. Using this exact eigenstate
we evaluate expectation values of the mth power of the operator
Q̂ by means of the constrained SSS method. We find that our
results from one sampling coincide with the exact expectation
values. In section 4 we investigate the model on the 36-site
lattice, for which a number of low-lying energy eigenvalues

are known from the exact diagonalizations [24]. Starting with
approximate states for the ground state of the system, which we
obtain through procedures described in appendix B, we argue
the accuracy of the constrained SSS method by comparing
our results with the ground state energy reported in [24].
The resultant expectation values show that the constraints are
effective to improve sampling errors. Section 5 is to report our
numerical results on the 48-site lattice where we know neither
the exact eigenstate nor the exact eigenvalue. Assuming some
symmetries which exist in the model on the 36-site lattice, we
evaluate expectation values of the mth power of the operator
Q̂ obtained from several approximate states whose Sz , the z
component of the total spin S of the system, is less than or
equal to 4. We then estimate the lowest energies for each
sector with Sz = κ (κ = 0, 1, 2, 3, 4). We see our data
are well described by the arguments based on the spontaneous
symmetry breaking. The final section is for summary and
discussions. At the end of the paper we add three appendices
in order to give detailed descriptions for some parts of our
numerical study. Appendix A is to explain how we determine
values of l in (2). In appendix B we show our procedure to
obtain approximate states on the 36-site and 48-site lattices.
Finally appendix C provides an empirical formula we use
in the evaluation of the systematic error which is caused by
employing the power method with a finite value of the power.

2. Method

In this section we describe our method. Section 2.1 is to give
a brief description of the conventional SSS method, the SSS
method which is not accompanied with any constraints [17].
Then section 2.2 follows to show our basic idea for constraints.
Finally in section 2.3 we describe the constrained SSS method
in detail.

2.1. The SSS method

The stochastic state selection is realized by a number of
stochastic variables. Let us expand a normalized state |ψ〉
in an N-dimensional vector space by a basis {| j〉}, |ψ〉 =∑N

j=1 | j〉c j . Then we generate a stochastic variable η j

following the on–off probability function:

Pj (η) ≡ 1

a j
δ(η − a j)+

(
1 − 1

a j

)
δ(η),

1

a j
≡ min

(
1,

|c j |
ε

)
.

(3)

A positive parameter ε which is common to all Pj (η) ( j =
1, 2, . . . , N) controls the reduction rate1. Note that η j =
a j (�1) or η j = 0 and statistical averages are 〈〈η j 〉〉 = 1
and 〈〈η2

j 〉〉 = a j because of (3). A random choice operator M̂
is then defined by

M̂ ≡
N∑

j=1

| j〉η j〈 j |. (4)

1 If the state |ψ〉 is not normalized, ε in (3) should be replaced by ε
√〈ψ |ψ〉.
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Using this M̂ we obtain a state |ψ̃〉:

|ψ̃〉 ≡ M̂|ψ〉 =
N∑

j=1

| j〉c jη j , (5)

which has less non-zero elements than |ψ〉 has. We call the
difference between |ψ̃〉 and |ψ〉

|χ〉g ≡ |ψ̃〉 − |ψ〉, (6)

a random state.
Since 〈〈η j 〉〉 = 1 an expectation value 〈ψ|Ô |ψ〉 with

an operator Ô is exactly equal to the statistical average
〈〈 〈ψ|Ô M̂ |ψ〉 〉〉.

Note that in the conventional SSS method all η j s are
independently generated stochastic variables.

2.2. Basic ideas for constraints

In this subsection we show our basic ideas in a very simple
toy model. This model has only two basis states in the vector
space, |1〉 and |2〉, which are orthonormalized as 〈1|1〉 =
〈2|2〉 = 1 and 〈1|2〉 = 0. If we apply the conventional SSS
method to a state |ψ〉 = |1〉c1 + |2〉c2 (c1 �= 0, c2 �= 0) in this
vector space we obtain a state |ψ̃〉:

|ψ̃〉 ≡ |1〉c1η1 + |2〉c2η2, (7)

where both η1 and η2 are stochastic variables generated by (3).
We can reproduce the state |ψ〉 by the averaging process since

〈〈 |ψ̃〉 〉〉 = |1〉c1〈〈η1〉〉 + |2〉c2〈〈η2〉〉 = |1〉c1 + |2〉c2 = |ψ〉.
(8)

Now we notify that independence between η1 and η2 is not
needed in (8) because 〈〈 |ψ̃〉 〉〉 = |ψ〉 is fulfilled as far
as 〈〈η1〉〉 = 〈〈η2〉〉 = 1. By making use of this possible
dependence we can impose a constraint. For example, let
η2 not be an independent stochastic variable but the following
function of η1:

η2 = 1 +
(

c1

c2

)2

(1 − η1). (9)

It is clear that (8) holds with (9) because 〈〈η2〉〉 = 1 follows
from 〈〈η1〉〉 = 1. With (9) we also see that

〈ψ|ψ̃〉 = c2
1η1 + c2

2η2 = c2
1 + c2

2 = 〈ψ|ψ〉 (10)

holds in each sampling. In other words, we have a constraint
that a normalization 〈ψ|ψ̃〉 is a constant c2

1 + c2
2. This also

means that
〈ψ|χ〉g = 0 (11)

for any sampling, where |χ〉g is the random state defined
by (6).

It is possible to impose a more general constraint:

〈�|χ〉g = 0 (12)

instead of (11), with a given state |�〉 = |1〉b1 + |2〉b2 (b1 �=
0, b2 �= 0). To do so we should let

η2 = 1 +
(

b1c1

b2c2

)
(1 − η1). (13)

Then we obtain

〈�|ψ̃〉 = b1c1η1 + b2c2η2 = b1c1 + b2c2 = 〈�|ψ〉, (14)

which is equivalent to (12).

2.3. The constrained SSS method

In this subsection we present a way to impose constraints in
the SSS method. It is straightforward to generalize discussions
in section 2.2 for a larger vector space constructed by N
basis states. Let the constraint be, with a given state |�〉 =∑N

j=1 | j〉b j :
〈�|χ〉g = 0 (15)

for a state |ψ〉 = ∑N
j=1 | j〉c j and |χ〉g = ∑N

j=1 | j〉c j(η j −1).
In this case we should solve the equation

N∑

j=1

b j c j (η j − 1) = 0 (16)

to give one of η j , say ηJ , as a function of N − 1 independent
stochastic variables with j �= J :

ηJ = 1 +
∑

j �=J

(
b j c j

bJ cJ

)
(1 − η j ). (17)

From the fact that 〈〈η j 〉〉 = 1 for all j except for J , it is clear
that (17) guarantees 〈〈ηJ 〉〉 = 1. As for 〈〈η2

J 〉〉, we find

〈〈η2
J 〉〉 − 1 =

∑

j �=J

(
b j c j

bJ cJ

)2

(a j − 1). (18)

In principle, J can be any of 1, 2, . . . , N . From a practical
point of view, however, J should be chosen carefully so that
sampling errors are diminished. When we choose the state |ψ〉
as the state |�〉, which means b j = c j for all j , the right-hand
side of (18) becomes

∑
j �=J (

c j

cJ
)4(a j −1). In this case it is clear

that we can lessen this quantity by picking up J which realizes
|cJ | � |c j | for any j . Numerical examinations for this choice
will be given in the following sections.

Another generalization to impose more than one constraint
is also easy. Let K denote the number of constraints. As far
as K < N we can impose constraints for given states |�k〉
(k = 1, 2, . . . , K ):

〈�k |χ〉g = 0, (k = 1, 2, . . . , K ), (19)

by requesting K variables among η j s depend on N − K
other η j s which are independent stochastic variables generated
by (3). A more concrete description of the way to impose
constraints is as follows. If we know the coefficients of the
expansions of these states, the above constraints (19) are

∑

j

b(k)j c j (η j − 1) = 0 (k = 1, 2, . . . , K ), (20)

with

|ψ〉 =
N∑

j=1

| j〉c j , |�k〉 =
N∑

j=1

| j〉b(k)j . (21)

3
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From (20) we obtain ηJk , (k = 1, . . . , K ) which are dependent
on other stochastic variables. Since these dependences are
linear, the conditions 〈〈ηJk 〉〉 = 1 are always satisfied. A choice
of {Jk} is arbitrary, but the sample fluctuations will depend on
the choice.

Hereafter we denote a random choice operator used in the
constrained SSS method by M̂c in order to avoid confusion
with the random choice operator in the conventional SSS
method.

3. Study with an exact eigenstate

In this section we study a system for which we know an exact
energy eigenstate as well as its eigenvalue. First we make
analytical discussions with the exact eigenstate |ψE〉 whose
exact eigenvalue is E . Then we numerically study the spin-1/2
quantum Heisenberg antiferromagnet on a 16-site triangular
lattice as a concrete example. For this small lattice we can
easily obtain the exact ground state and its eigenvalue by the
exact diagonalization. This enables us to compare our results
from the constrained SSS method with the exact ones.

Let us examine the expectation value of the mth power of
Q̂ = l Î − Ĥ , 〈ψ|Q̂m |ψ〉, with |ψ〉 = |ψE〉. From the exact
eigenvalue we obtain

〈ψE|Q̂m |ψE〉 = Qm, Q ≡ l − E . (22)

In order to calculate these expectation values by the
constrained SSS method, we insert random choice operators
M̂ (n)

c (n = 1, 2, . . . ,m) and calculate

〈ψE|Q̂M̂ (m)
c · · · Q̂ M̂ (1)

c |ψE〉. (23)

Here we denote random choice operators by M̂ (n)
c instead of

M̂c since we want to emphasize that different operators, each
of which includes stochastic variables independent of those in
other operators, are used. Let us define states |φ(n)〉 as follows:

|φ(n)〉 ≡ Q̂ M̂ (n−1)
c · · · Q̂M̂ (1)

c |ψE〉 (n � 2),

|φ(1)〉 ≡ |ψE〉.
(24)

Note that |φ(n)〉 = Q̂M̂ (n−1)
c |φ(n−1)〉 with n � 2 by definition.

For each M̂ (n)
c we impose the dependence (17) so that the

constraint

〈ψE|χ(n)〉g(n) = 0 (25)

holds for

|χ(n)〉g(n) ≡ M̂ (n)
c |φ(n)〉 − |φ(n)〉. (26)

Here J (n) of the dependent stochastic variable is determined
by the condition |c(n)J (n) | = max1� j�N |c(n)j | with the expansion

|φ(n)〉 = ∑ | j〉c(n)j . Notifying that 〈ψE|M̂ (n)
c |φ(n)〉 =

〈ψE|φ(n)〉 follows from (25), we obtain

〈ψE|Q̂M̂ (n)
c |φn〉 = Q〈ψE|M̂ (n)

c |φ(n)〉 = Q〈ψE|φ(n)〉
= Q〈ψE|Q̂M̂ (n−1)

c |φ(n−1)〉. (27)

Figure 1. Ratios defined by (29) calculated on a 16-site triangular
lattice with ε = 0.05. Here we use the exact ground state as |ψE〉 for
which E = Eg = −8.5555. The crosses plot data from one sample
obtained by the constrained SSS method. We also plot, by open
diamonds, ratios 〈ψE|Q̂ M̂m · · · Q̂ M̂1|ψE〉/〈ψE|Q̂ M̂m−1 · · · Q̂ M̂1|ψE〉
which are averages from 100 samples generated by the conventional
SSS method. Errors in the figure are statistical errors only.

Using (27) repeatedly, we find

〈ψE|Q̂M̂ (m)
c · · · Q̂ M̂ (1)

c |ψE〉 = 〈ψE|Q̂M̂ (m)
c |φ(m)〉

= Q〈ψE|Q̂M̂ (m−1)
c |φ(m−1)〉

= · · ·
= Qm−1〈ψE|Q̂M̂ (1)

c |φ(1)〉
= Qm〈ψE|M̂ (1)

c |φ(1)〉 = Qm〈ψE|φ(1)〉
= Qm〈ψE|ψE〉 = Qm . (28)

This result implies that the exact calculation is possible in
the sampling. Note that only one sampling is enough in the
constrained SSS method.

Now we present numerical results for the ground state of
the system on the 16-site triangular lattice. The ground state
energy is known to be E = Eg = −8.5555. Since we employ
l = 2 here, as is stated in appendix A, the exact value of Q
is l − Eg = 10.5555. In figure 1 we plot the ratios of the
expectation values (23):

R(m) ≡ 〈ψE|φ(m+1)〉
〈ψE|φ(m)〉 = 〈ψE|Q̂M̂ (m)

c |φ(m)〉
〈ψE|φ(m)〉 , (29)

obtained in one sampling with the constrained SSS method.
The parameter ε in (3) is 0.05. As is expected from the above
discussion, we observe R(m) = Q for any value of m. We also
present results obtained by the conventional SSS method, aver-
ages of 〈ψE|Q̂M̂ (m) · · · Q̂ M̂ (1)|ψE〉/〈ψE|Q̂M̂ (m−1) · · · Q̂M̂ (1)|
ψE〉 from 100 samples with ε = 0.05, where M̂ (n)s denote
different random choice operators in the conventional SSS
method. Statistical errors for these averages are also plotted
in the figure, where for data Xi (i = 1, 2, . . . , nsample) the
statistical error 
[X] is defined by


[X] = σ [X]√
nsample − 1

, (30)

4
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with the standard deviation

σ [X] =
√√√√ 1

nsample

nsample∑

i=1

X2
i −

{
1

nsample

nsample∑

i=1

Xi

}2

. (31)

Comparing these data we clearly see that fluctuations existing
in the conventional SSS method disappear with constraints
stated by (25).

4. Study with an approximate eigenstate

In this section we argue the case in which we use an
approximate eigenstate |ψA〉 instead of |ψE〉. First we present
an analytical argument which endorses that the constrained
SSS method is effective for eigenvalue evaluations starting
from an approximate state. Then using the 36-site lattice we
demonstrate that, starting with an approximate ground state,
we can obtain in the constrained SSS method the correct
ground state energy with much less fluctuations than those
from the conventional SSS method.

Let us start with an approximate state |ψA〉 which has
some overlap with the corresponding exact eigenstate |ψE〉:

|ψA〉 = w|ψE〉 + s|ζ 〉. (32)

Here |ψA〉 is normalized with w2 + s2 = 1 and we expect
|w| 	 |s|. Instead of (23) we calculate the expectation value
〈ψA|Q̂M̂ (m)

c · · · Q̂M̂ (1)
c |ψA〉 with constraints

〈ψA|M̂ (n)
c |φ(n)A 〉 = 〈ψA|φ(n)A 〉 (n = 1, 2, . . . ,m) (33)

where

|φ(n)A 〉 ≡ Q̂M̂ (n−1)
c · · · Q̂M̂ (1)

c |ψA〉 (n � 2),

|φ(1)A 〉 ≡ |ψA〉.
(34)

Let us examine 〈ψA|Q̂M̂ (1)
c |φ(1)A 〉 when the constraint (33)

holds. Using (32) we find that

〈ψA|Q̂M̂ (1)
c |φ(1)A 〉 = (w〈ψE| + s〈ζ |)Q̂ M̂ (1)

c |φ(1)A 〉
= (Qw〈ψE| + s〈ζ |Q̂)M̂ (1)

c |φ(1)A 〉
= (Q[〈ψA| − s〈ζ |] + s〈ζ |Q̂)M̂ (1)

c |φ(1)A 〉
= Q〈ψA|M̂ (1)

c |φ(1)A 〉 + s〈ζ |(Q̂ − QÎ )M̂ (1)
c |φ(1)A 〉

= Q〈ψA|φ(1)A 〉 + s〈ζ |(Q̂ − QÎ )(|φ(1)A 〉 + |χ(1)A 〉g(1)A )

= Q〈ψA|ψA〉 + s〈ζ |(Q̂ − QÎ )(|ψA〉 + |χ(1)A 〉g(1)A )

= Q + s〈ζ |(Q̂ − QÎ )|ψA〉
+ s〈ζ |(Q̂ − QÎ )|χ(1)A 〉g(1)A , (35)

where
|χ(n)A 〉g(n)A ≡ M̂ (n)

c |φ(n)A 〉 − |φ(n)A 〉. (36)

Note that on the right-hand side of (35) only the last term
contains the fluctuation by a sampling and that this term should
be small when |s| 
 1.

Next we turn to the numerical study for the ground state
on the 36-site lattice. The exact ground state energy of this
system is known to be −0.186 791 per bond [24], namely

Figure 2. Ratios (37) on a 36-site triangular lattice which are
generated by the constrained SSS method (filled marks). We employ
two states to approximate the ground state energy. By filled circles
we plot results which we obtain using an approximate state
constructed by 333 001 basis states (|ψA1〉). With the same
approximate state we also calculate ratios
〈ψA|Q̂ M̂ (m) · · · Q̂ M̂ (1)|ψA〉/〈ψA|Q̂ M̂ (m−1) · · · Q̂ M̂ (1)|ψA〉 from 100
samples by the conventional SSS method with ε = 0.01, which we
show by open circles. Another approximate state constructed by
887 875 basis states (|ψA2〉) is also used in the constrained SSS
method, whose results from 100 samples with ε = 0.01 are plotted
by filled squares. The dotted line in the figure shows the exact value
of Q obtained from the exact ground state energy [24]. Errors in the
figure are statistical errors only. Statistical errors for both filled
marks are within the marks.

−20.1734 in total. Under the symmetries the ground state
of this system has, the number of basis states in the whole
Sz = 0 sector amounts to ∼2.2×107. Following the procedures
described in appendix B we create two |ψA〉s for the ground
state of the system. Let us denote them by |ψAμ〉 (μ = 1, 2).
The number of basis states with non-zero coefficients in the
expansion of |ψA1〉 is 333 001 and the expectation value of Ĥ
is 〈ψA1|Ĥ |ψA1〉 = −19.577, while |ψA2〉 includes 887 875
basis states with non-zero coefficients and 〈ψA2|Ĥ |ψA2〉 =
−19.817. In the same manner as was stated in section 3, we
request one constraint for each random choice operator. We
choose J (n) for the only non-independent variable ηJ (n) using
the same criteria as that in the Ns = 16 case. Based on
conditions we notify in appendix A, we choose l = 4 (namely
Q̂ = 4 Î − Ĥ ) here. Our results for the system are presented in
figures 2–5. Figure 2 plots

R(m)A ≡ 〈ψA|φ(m+1)
A 〉

〈ψA|φ(m)A 〉 = 〈ψA|Q̂M̂ (m)
c |φ(m)A 〉

〈ψA|φ(m)A 〉 (37)

calculated from 100 samples with the constraint stated by (33).
The value of the parameter ε is 0.01. In the figure we also plot
values of 〈ψA|Q̂M̂ (m) · · · Q̂ M̂ (1)|ψA〉/〈ψA|Q̂M̂ (m−1) · · · Q̂
M̂ (1)|ψA〉, which are obtained by the conventional SSS method
from averages of 100 samples with ε = 0.01 using the
approximate state |ψA1〉. We see that the values mostly agree in

5
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Figure 3. Standard deviations for ratios shown in figure 2, which we
obtain using the approximate state constructed by 333 001 basis
states (|ψA1〉) from 100 samples with ε = 0.01. Filled circles present
σ [R(m)

A ] obtained by the constrained SSS method. Open circles are
standard deviations for ratios obtained by the conventional SSS
method.

Figure 4. Na, the number of basis states with non-zero coefficients in
the expansion of M̂ (m)

c |φ(m)A 〉. All data are calculated from one sample
with |ψA〉 = |ψA1〉. Pluses, diamonds, triangles and asterisks present
the results with ε = 5 × 10−2, 1 × 10−2, 5 × 10−3 and 1 × 10−3,
respectively.

both methods. In figure 3 we compare the standard deviations
σ of the ratios shown in figure 2. We see the exponential
growth of the standard deviations except for the m = 1 datum
from the constrained SSS method. It is quite impressive that
fluctuations from the constrained SSS method are much less
than those from the conventional SSS method.

Let us present some more data on the 36-site lattice which
will be helpful to understand the role of the parameter ε and the
quality of the approximate state |ψA〉. Figure 4 is to show how
much basis states are included in the expansion of M̂ (m)

c |φ(m)A 〉.

Figure 5. Ratios R(mmax)
A with mmax = 20 versus ε. Circles (squares)

present the results obtained from 10 samples with |ψA1〉 (|ψA2〉).
Errors shown in the figure are statistical errors only. The standard
deviations calculated from these 10 samples are consistent with those
shown in figure 2, where the number of samples is 100. The dotted
line indicates the exact value of Q obtained from the exact ground
state energy [24].

Here we present only results from |ψA1〉 since we observe
Nas are mostly insensible to the choice of the |φ(1)A 〉 = |ψA〉
stated above. We see that, as m increases, Na becomes almost
constant for each value of ε and there

Na ∝ ε−1 (38)

holds. Note that this means that by the choice of ε we
can change the CPU time and the memory which we should
supply in numerical studies. Figure 5 shows several values
of R(20)

A from 10 samples obtained with different values of
ε as well as with two different approximate states |ψA1〉 and
|ψA2〉. It is quite reasonable that the data indicate we can
obtain a better lower bound for Q (a better upper bound for E)
with a better approximate state |ψA2〉 when the value of mmax

is the same. In order to prepare a better approximate state,
however, we of course have to deal with a larger portion of the
Hilbert space. We also see in figure 5 that statistical errors,
and therefore the standard deviation which is 3
[R(20)

A ] in this
figure with

√
nsample − 1 = 3, are irrelevant to the choice of the

approximate state, while they decrease rapidly for lower values
of ε. We observe that

σ [R(20)
A ] ∝ εγ (γ ∼ 3). (39)

5. Application to the 48-site system

In this section we study the ground state energy and
some excited energies of the spin-1/2 quantum Heisenberg
antiferromagnet on the 48-site triangular lattice using the
constrained SSS method. Similar to sections 3 and 4, we
request one constraint for each random choice operator and
decide J (n) for the only non-independent variable ηJ (n) with
the condition |c(n)J (n) | � |c(n)j | for all j . In each sector

6
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Table 1. Approximate states employed for the 48-site system and results for the ratio R(mmax)
A with mmax = 15, which we obtain from 100

samples using the constraint (33). Nκ denotes the number of basis states of the whole Sz = κ sector with the assumed symmetries, while NA

is the number of basis states whose coefficients are non-zero in the expansion of |ψA〉.
Sz NA NA/Nκ (×10−3) 〈ψA|Ĥ |ψA〉 ε (×10−3) Ēκ

0 4.9 × 108 8.8 −26.411 5 −26.611 ± 0.015
1 1.5 × 108 2.8 −25.981 7 −26.327 ± 0.023
2 1.2 × 108 2.4 −25.482 7 −25.815 ± 0.020
3 7.3 × 107 1.9 −24.753 7 −25.064 ± 0.017
4 9.0 × 107 3.1 −24.094 7 −24.302 ± 0.016

Figure 6. Ratios (37) in the Sz = κ (0 � κ � 4) sectors on a 48-site
triangular lattice calculated from 100 samples with ε = 5 × 10−3

(ε = 7 × 10−3) for Sz = 0 (Sz � 1). We use approximate states
which are composed of 489 413 140, 150 733 425, 115 759 910,
73 294 432 and 90 008 649 basis states in the Sz = 0, 1, 2, 3 and 4
sectors, respectively. Circles present the Sz = 0 results, while
triangles-up,-down,-left and -right show results for Sz = 1, 2, 3 and
4. All statistical errors are within the marks.

with Sz = κ (κ = 0, 1, 2, 3, 4) we study the state whose
energy eigenvalue is the lowest in that sector. Following the
procedures in appendix B we calculate |ψA〉s summarized in
table 1. As is stated in appendix B, symmetries we assume for
the approximate states are the same as those for the Ns = 36
case. Figure 6 shows our results for the ratio R(m)A defined
by (37) up to mmax = 15 with values of l given in appendix A.
All data are calculated from 100 samples with ε = 5 × 10−3

(ε = 7 × 10−3) for Sz = 0 (Sz > 0).
It is known that the argument by the spontaneous

symmetry breaking in semiclassical Néel ordered antiferro-
magnets suggests the following energy spectrum on finite-sized
lattices [3, 28, 34, 35]:

E(S)− E(0) = 1

2χ�
S(S + 1)

Ns
, (40)

where E(S) and χ� denote the lowest energy of the system
with the total spin S and the susceptibility, as long as S 
√

Ns. Keeping this in mind, we plot values for Ēκ/(3Ns)

versus S(S + 1) in figure 7 with an assumption S = κ , where
Ēκ denotes the upper bound of E with Sz = κ given by R(mmax)

A .

Figure 7. Energy per bond obtained by Ēκ/(3Ns) (κ = 0, 1, 2, 3, 4)
on the 48-site lattice. The data are shown by asterisks, whose errors
are within the marks. We also plot the 36-site data from [24] by
crosses. The dotted (dashed) line is obtained by the least-squares fit
assuming (40) on the 48-site (36-site) lattice.

Namely, Ēκ is l − R(15)
A in the Sz = κ sector. Values of Ēκ

are also presented in table 1. We see that those energies on
the 48-site lattice are well described by (40). From the least-
squares fit of the data with S = κ = 0, 1, 2, 3 and 4 we obtain
1/2χ� = 5.6. In figure 7 we also plot the data on the 36-site
lattice obtained by the exact diagonalization [24], which gives
1/2χ� = 5.1. The fact that this value is compatible with the
discussion for the susceptibility in [28] supports the finite-size
arguments (40) based on the symmetry breaking.

Finally let us comment on the spin gap 
spin(Ns). Results
on Ē0 and Ē1 give us 
spin(48) = 0.284 ± 0.027. Through
the finite-size extrapolation using data
spin(12),
spin(36) and

spin(48) we obtain 
spin(∞) ∼ 0.10, which is smaller than
the one evaluated from the data with Ns � 36 [3].

6. Summary and discussions

In previous works [15–20] we have developed the stochastic
state selection (SSS) method, which is a kind of Monte Carlo
method suitable to calculate eigenvalues in large quantum
systems. In this paper we proposed the constrained stochastic
state selection method, where some constraints are imposed in
each sampling.

7
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It is a characteristic feature of the SSS method to sample
many states simultaneously. Namely, in the SSS method we
introduce N stochastic variables to form a random choice
operator, where N denotes the number of basis states of
the whole vector space. In the conventional SSS method
all of these N stochastic variables are independent of each
other. In the constrained SSS method, on the other hand,
K variables in the random choice operator are determined
by values of the N − K other ones which are independently
generated stochastic variables. Using these dependences we
can force K relations to represent constraints that should hold
in each sampling, provided that these relations are linear of all
stochastic variables.

We pursue arguments to a conclusion that the constrained
SSS method is effective to decrease statistical errors
in calculations of energy eigenvalues using approximate
eigenstates. Numerical demonstrations then follow, which
apply the constrained SSS method to the spin-1/2 quantum
Heisenberg antiferromagnet on a 36-site triangular lattice.
Here we employ the power method in combination with the
constrained SSS samplings. We impose one constraint which
requests that each sample for a given state should not change
the inner product between the initial approximate state and the
given state. With initial states which approximate the ground
state of the system, we calculate expectation values to be used
in the power method. We observe much less fluctuations in the
constrained SSS method compared to those in the conventional
SSS method and the ground state energy estimated in the
constrained SSS method are in good agreement with the known
exact value.

We then successfully calculate the lowest energies in Sz =
κ (κ = 0, 1, 2, 3, 4) sectors on the 48-site triangular lattice.
Our results on low-lying energies with different values of Sz

add evidence of the ordered ground state and the finite-size
arguments based on the symmetry breaking. In particular, our
result on the spin susceptibility obtained from the ground state
energy and the low-lying excited state energies is consistent
with finite-size effects reported in [28].

Several comments are in order.
In a study of the Sz = 0 sector in [19] we use the Lanczos

method together with the conventional SSS method. In the
present work we employ a simple power method instead of
the Lanczos method so that the calculation algorithm is simple
enough to enable us to calculate eigenvalues with Sz �= 0
within our computer resources.

The efficiency of the method in numerical studies is
mainly controlled by the value of the parameter ε. In general
we can expect better results with smaller values of ε, but
those calculations would take more CPU time and memory.
Therefore in actual calculations one should choose the value
of ε so that the computer resources stay within the limits of
the computers2. Roughly speaking, the memory size MCPU is
proportional to Nb, the number of basis states which have non-
zero coefficients in the expansion of |φ(m+1)〉 = Q̂ M̂ (m)

c |φ(m)〉.
Since we observe that Nb is proportional to Na shown in

2 Note that the method is applicable even with large values of ε provided that
the number of samples is large enough.

figure 4 and that its dependence on ε is described as (38), it
leads to

MCPU ∝ ε−1. (41)

The total CPU time TCPU, on the other hand, has a more
complicated relation to ε because it depends on the number of
samples nsample as well as Na. It also depends on the number of
iterations mmax when we use the method in combination with
the power method. Therefore

TCPU ∝ mmaxnsample Na. (42)

Values of mmax and nsample are determined from the results for
the standard deviations σ such as those shown in figure 3.
Since, as we have observed an exponential growth of σ as a
function of m (except for m = 1) there, fluctuations of the
data grow rapidly when iterations are repeated. We therefore
have to give up our numerical study with some finite value of
m before the data become statistically meaningless. If we can
employ a smaller value of ε, the value of mmax would become
larger because of the improvement of σ suggested by (39).
The number of samples should be chosen so that the statistical
errors are reasonably small for m � mmax. The total CPU time
we spent to calculate the data presented in this paper is about
2000 h with a computer whose memory is 8 GB and whose
CPU is a Xeon dual core.

What can we say about the accuracy of our results? Let
us here estimate the systematic error which exists owing to
the power method with finite powers up to mmax. On the
36-site lattice the exact ground state energy is known to be
Eg = −20.1734. The upper bound of the systematic error
therefore can be estimated by (Eub − Eg)/|Eg| with an Eub, an
upper bound of E given by l−Qlb, where Qlb denotes the lower
bound of Q. We see that R(mmax)

A gives our best lower bound
of Q, because R(m)A increases as m grows and R(m)A → Q
(m → ∞) should hold. Using l − R(20)

A in figure 2 as Eub

we conclude that the systematic error is less than 0.8% (0.5%)
for |ψA1〉 (|ψA2〉). On the 48-site lattice where no exact energy
eigenvalue is known, we try to find a lower bound Elb from
our data using the upper bound Eub of E . Note that this task
is equivalent to finding Qub, an upper bound of Q, because
Elb = l − Qub. In order to find an upper bound of Q we
carry out an empirical fit. Details of this fit are described in
appendix C. Then using Eub and Elb we evaluate the systematic
error by (Eub − Elb)/|Eub| in each sector with Sz = κ . Results
from the data presented in figure 7 with Qlb = R(mmax)

A = R(15)
A

are 0.6%, 0.9%, 0.8%, 3.2% and 1.3% for Sz = 0, 1, 2, 3 and
4, respectively3.

It would be the simplest way to impose only one constraint
in each random choice operator (K = 1) as we did in sections 3
and 4. Nevertheless one should remember that imposing more
constraints in one random choice operator (K > 1) is also, at
least theoretically, possible in the constrained SSS method as
was discussed in section 2. Although the K > 1 calculations
might be numerically more difficult, further study for these
cases is desired from a practical point of view.

3 Similar analysis on the 36-site lattice yields the result that, with mmax = 20,
(Eub − Elb)/|Eub| is 0.9% (0.4%) with |ψA1〉 (|ψA2〉).
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Finally let us emphasize that the constrained SSS method,
as well as the conventional SSS method, has no physical
bias since this method does not depend on any physical
assumption4. Therefore the method is applicable to numerical
study of various systems. Results obtained in this work
on triangular lattices encourage us to numerically study spin
systems on other lattices by means of this method.
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Appendix A

Here we describe how we determine the value of l in the
operator Q̂ defined by (2). Let us denote all eigenvalues of
Ĥ by Emin(<0), Ea, Eb, . . . , Emax(>0), where

Emin � Ea � Eb � · · · � Emax.

It is easy to see Emax = 3Ns/4 for the Ns-site lattice. Since
Q̂ = l Î − Ĥ , eigenvalues of Q̂ are then

l − Emin � l − Ea � l − Eb � · · · � l − Emax.

Let us consider a state |�〉 and expand it using
an orthonormal basis {|�x〉} which is obtained from
eigenfunctions of Ĥ :

|�〉 =
∑

x

|�x〉 fx .

Then we obtain

〈�|Q̂m|�〉 =
∑

x

f 2
x (l − Ex)

m

= f 2
y (l − Ey)

m

{
1 +

∑

x �=y

f 2
x

f 2
y

(
l − Ex

l − Ey

)m
}

= f 2
y (l − Ey)

m

{
1 +

∑

x �=y

f 2
x

f 2
y

(
1 − Ex − Ey

l − Ey

)m
}
,

where by the suffix y we denote the term whose |l − Ex | is
the largest among x with non-zero fx . It is clear that the term
f 2

y (l − Ey)
m dominates as m increases.

When |�〉 = |ψA〉 defined by (32) with fmin|�min〉 =
w|ψE〉, the value of l therefore should satisfy the condition

|l − Emin| > |l − Emax|

in order for us to pick up the term with f 2
min(l − Emin)

m in
〈ψA|Q̂m |ψA〉. Limiting ourselves to the range l < Emax we
thus see l + |Emin| > Emax − l, namely

l > 1
2 (Emax − |Emin|)

4 Although in applications presented in this paper we assumed some
symmetries to construct approximate states, these assumptions are not essential
in the constrained SSS method itself.

Table A.1. Values of l we use in the Sz = κ sectors (κ = 0 for the
36-site lattice and 0 � κ � 4 for the 48-site lattice), where Sz is the z
component of the total spin S. Eupper is an upper bound for the lowest
energy eigenvalue of the system, which we obtain from the
expectation value of the Hamiltonian calculated with an approximate
state, while Emax denotes the maximum energy eigenvalue of the
system.

Ns Sz Eupper Emax − |Eupper| l

36 0 −19.57 7.43 4.0
−19.81 7.19 4.0

48 0 −26.41 9.59 5.0
1 −25.98 10.02 5.2
2 −25.48 10.52 5.5
3 −24.75 11.25 5.8
4 −24.09 11.91 6.2

should hold. In most cases we have to use an upper bound of
Emin, Eupper, instead of Emin. Then we determine the value of l
in the range

l > 1
2

(
Emax − |Eupper|

)
,

which includes the range l > 1
2 (Emax−|Emin|) for any Eupper <

0 because Emax − |Eupper| > Emax − |Emin| holds.
In choosing a value of l which satisfies the above

condition, one should also note that contributions from excited
states increase as l increases because the dumping factors
(1 − Ex −Emin

l−Emin
)m decrease.

For the 16-site lattice, we use the exact value Emin =
−8.5555 to decide l = 2. For 36-site and 48-site lattices we
use Eupper calculated from 〈ψA|Ĥ |ψA〉. Values of l we chose
are summarized in table A.1.

Appendix B

Here we explain how we obtain approximate states |ψA〉s on
the 36-site and 48-site lattices. The method is essentially the
same as the one given in [19] for the 36-site triangular lattice.
The only difference is that we include here as many degenerate
Ising-like configurations as possible in an initial trial state.
This improvement comes from Wannier’s rigorous proof [36]
which claims that a classical antiferromagnetic Ising system,
namely the spin system at zero temperature T = 0, on an Ns-
site triangular lattice is heavily degenerated for its minimum
energy −Ns/4.

For our numerical work in this paper, we employ one
basis on the 36-site lattice and five bases on the 48-site lattice
corresponding to values of Sz . First we comment on these
bases together with brief descriptions for the transformation
symmetries we impose on them. Then we show procedures to
create an approximate state for numerical studies.

Each state | j〉 in our basis states {| j〉} is represented
by linear combinations of states |s1, s2, . . . , sNs 〉 with sn =
+1/2 or −1/2 (n = 1, 2, . . . , Ns), which indicates that the
z component of the spin on the nth site is +1/2 or −1/2,
respectively. They belong to one of 2Ns + 1 sectors according
to the value of Sz = ∑Ns

n=1 sn , which is the z component of the
total spin S of the system.

9
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The basis states to form the approximate state for the
ground state on the 36-site lattice should have symmetries
found in [24]. Following them we construct our basis states
with Sz = 0 so that they have translational symmetries for
the zero momentum (0, 0) and even under the π rotation, the
2π/3 rotation and the reflection. Each space group which
consists of the translation group and the point group has then
432(=12 × 36) elements.

For the model on the 48-site lattice we assume each basis
state with a given value of Sz has the same symmetries as those
of the exact state for the Ns = 36 lattice [24] whose energy
eigenvalue is the lowest in the corresponding sector. Namely,
all basis states in both bases have translational symmetries for
the zero momentum (0, 0) and even under the 2π/3 rotation
and the reflection. The basis states in the basis used for
Sz = 0, 2 and 4 calculations also have the even π rotational
symmetry, while those in another basis prepared for Sz = 1
and 3 have the odd one. Both space groups have 12Ns = 576
elements.

Now we start to calculate |ψA〉 in each sector with a fixed
value of Sz , using an appropriate basis among those stated
above.

The first stage is to find as many degenerate states for
the eigenvalue −Ns/4 as possible. Using the conventional
Monte Carlo method at low temperature (T = 0.5), where the
classical energy is used as the Boltzmann weight, we pick up
Nit ∼ 104 states to fulfil the condition 〈 j |Ĥ | j〉 = −Ns/4 and
Sz = κ (0 � κ � 4), where the Hamiltonian Ĥ is given by (1).
With this Nit basis states we calculate the eigenstate |�t〉 for
the lowest energy eigenvalue within this partial Hilbert space
by means of the conventional exact diagonalization.

The next stage to calculate an approximate state |ψA〉 is to
repeat the following procedures, starting from the initial |�t〉
obtained above, until the expectation value for Ĥ does not
change beyond our criteria.

(i) Extend the partial Hilbert space given by |�t〉 through
operations of a few Ĥs to |�t〉, until the available
computer memory is exhausted. The maximum number
of basis states we can permit is about 108.

(ii) Within the Hilbert space determined in (i), pursue the state
|�t′ 〉 with which 〈�t′ |Ĥ |�t′ 〉 is as low as possible.

(iii) If the change of the obtained value 〈�t′ |Ĥ |�t′ 〉 is in
the range of five decimal digits, employ |�t′ 〉 as the
approximate state |ψA〉. Otherwise, form a state |�t′′ 〉
by keeping a few per cent of the basis states whose
coefficients in the expansion of |�t′ 〉 are relatively large
and replace |�t〉 by |�t′′ 〉 to proceed with (i), (ii) and (iii)
once more.

Appendix C

Here we explain how we evaluate the lower bound of the
eigenvalue of Q̂ = l Î − Ĥ , which we denote by Qlb, from the
data R(m)A (m = 1, 2, . . . ,mmax) and a given value of the upper
bound of the eigenvalue of Q̂ denoted by Qub. We employ an

Figure C.1. Typical plots of
√

D(mmax, Qw, q
0
, α), where

D(mmax, Qw, q0, α) is defined by (44) as a function of Qw. Using
this figure we can find Qub, which is indicated by a filled diamond,
from a given value of Q lb indicated by an open diamond. The dotted
horizontal line is to guide the eyes.

empirical formula we presented in a previous paper [15], which
is

F(m, Qw, q0, α) ≡ Qm
w

(
q0 + q1

m + α + 1

)
,

q1 = (α + 1)(1 − q0).

(43)

The quantity we measure is
√

D(mmax, Qw, q0, α):

D(mmax, Qw, q0, α) ≡
mmax∑

m=1

[
1 − 〈ψA|φ(m)A 〉

F(m, Qw, q0, α)

]2

, (44)

where values of 〈ψA|φ(m)A 〉 (m = 1, 2, . . . ,mmax) are
calculated from the data R(m)A :

〈ψA|φ(m)A 〉 =
m−1∏

n=0

R(n)A , R(0)A ≡ 1. (45)

Changing Qw around Qlb which is given by the data R(mmax)
A ,

we look for values of parameters q0 and α, say q
0

and α,
so that D(mmax, Qw, q

0
, α) gives a local minimum for the

given value of Qw. Figure C.1 shows a typical result for√
D(mmax, Qw, q

0
, α) as a function of Qw. By requesting that

the value of
√

D at Qw = Qub should be equal to the value at
Qw = Qlb, we obtain a upper bound Qub shown in the figure.
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